0x00 前言
最近在看《PHP 内核剖析》,关于 PHP 数组方面有所得,特此撰文一篇总结记录 (∩_∩)。因为 PHP 的数组是很强大且很重要的数据类型,它既支持单纯的数组又支持键值对数组,其中键值对数组类似于 Go 语言的 map
但又保证了能够按顺序遍历,并且由于采用了哈希表实现能够保证基本查找时间复杂度为 O(1)。所以接下来让我们了解一下 PHP 数组的底层实现吧~
0x01 数组的结构
一个数组在 PHP 内核里是长什么样的呢?我们可以从 PHP 的源码里看到其结构如下:
1 | // 定义结构体别名为 HashTable |
nNumUsed
和nNumOfElements
的区别:nNumUsed
指的是arData
数组中已使用的Bucket
数,因为数组在删除元素后只是将该元素Bucket
对应值的类型设置为IS_UNDEF
(因为如果每次删除元素都要将数组移动并重新索引太浪费时间),而nNumOfElements
对应的是数组中真正的元素个数。nTableSize
数组的容量,该值为 2 的幂次方。PHP 的数组是不定长度但 C 语言的数组定长的,为了实现 PHP 的不定长数组的功能,采用了「扩容」的机制,就是在每次插入元素的时候判断nTableSize
是否足以储存。如果不足则重新申请 2 倍nTableSize
大小的新数组,并将原数组复制过来(此时正是清除原数组中类型为IS_UNDEF
元素的时机)并且重新索引。nNextFreeElement
保存下一个可用数字索引,例如在 PHP 中$a[] = 1;
这种用法将插入一个索引为nNextFreeElement
的元素,然后nNextFreeElement
自增 1。
_zend_array
这个结构先讲到这里,有些结构体成员的作用在下文会解释,不用紧张O(∩_∩)O哈哈~。下面来看看作为数组成员的 Bucket
结构:
1 | typedef struct _Bucket { |
0x01 数组访问
我们知道 PHP 数组是基于哈希表实现的,而与一般哈希表不同的是 PHP 的数组还实现了元素的有序性,就是插入的元素从内存上来看是连续的而不是乱序的,为了实现这个有序性 PHP 采用了「映射表」技术。下面就通过图例说明我们是如何访问 PHP 数组的元素 :-D。
注意:因为键名到映射表下标经过了两次散列运算,为了区分本文用哈希特指第一次散列,散列即为第二次散列。
由图可知,映射表和数组元素在同一片连续的内存中,映射表是一个长度与存储元素相同的整型数组,它默认值为 -1 ,有效值为 Bucket
数组的下标。而 HashTable->arData
指向的是这片内存中 Bucket
数组的第一个元素。
举个例子 $a['key']
访问数组 $a
中键名为 key
的成员,流程介绍:首先通过 Time 33 算法计算出 key
的哈希值,然后通过散列算法计算出该哈希值对应的映射表下标,因为映射表中保存的值就是 Bucket
数组中的下标值,所以就能获取到 Bucket
数组中对应的元素。
现在我们来聊一下散列算法,就是通过键名的哈希值映射到「映射表」的下标的算法。其实很简单就一行代码:
1 | nIndex = h | ht->nTableMask; |
将哈希值和 nTableMask
进行或运算即可得出映射表的下标,其中 nTableMask
数值为 nTableSize
的负数。并且由于 nTableSize
的值为 2 的幂次方,所以 h | ht->nTableMask
的取值范围在 [-nTableSize, -1]
之间,正好在映射表的下标范围内。至于为何不用简单的「取余」运算而是费尽周折的采用「按位或」运算?因为「按位或」运算的速度要比「取余」运算要快很多,我觉得对于这种频繁使用的操作来说,复杂一点的实现带来的时间上的优化是值得的。
散列冲突
不同键名的哈希值通过散列计算得到的「映射表」下标有可能相同,此时便发生了散列冲突。对于这种情况 PHP 使用了「链地址法」解决。下图是访问发生散列冲突的元素的情况:
这看似与第一张图差不多,但我们同样访问 $a['key']
的过程多了一些步骤。首先通过散列运算得出映射表下标为 -2 ,然后访问映射表发现其内容指向 arData
数组下标为 1 的元素。此时我们将该元素的 key
和要访问的键名相比较,发现两者并不相等,则该元素并非我们所想访问的元素,而元素的 val.u2.next
保存的值正是下一个具有相同散列值的元素对应 arData
数组的下标,所以我们可以不断通过 next
的值遍历直到找到键名相同的元素或查找失败。
0x02 插入元素
插入元素的函数 _zend_hash_add_or_update_i
,基于 PHP 7.2.9 的代码如下:
1 | static zend_always_inline zval *_zend_hash_add_or_update_i(HashTable *ht, zend_string *key, zval *pData, uint32_t flag ZEND_FILE_LINE_DC) |
0x03 扩容
前面将数组结构的时候我们有提到扩容,而在插入元素的代码里有这样一个宏 ZEND_HASH_IF_FULL_DO_RESIZE
,这个宏其实就是调用了 zend_hash_do_resize
函数,对数组进行扩容并重新索引。注意:并非每次 Bucket
数组满了都需要扩容,如果 Bucket
数组中 IS_UNDEF
元素的数量占较大比例,就直接将 IS_UNDEF
元素删除并重新索引,以此节省内存。下面我们看看 zend_hash_do_resize
函数:
1 | static void ZEND_FASTCALL zend_hash_do_resize(HashTable *ht) |
重新索引的逻辑在 zend_hash_rehash
函数中,代码如下:
1 | ZEND_API int ZEND_FASTCALL zend_hash_rehash(HashTable *ht) |
0x04 总结
嗯哼,本文就到此结束了,因为自身水平原因不能解释的十分详尽清楚。这算是我写过最难写的内容了,写完之后似乎觉得这篇文章就我自己能看明白/(ㄒoㄒ)/~~因为文笔太辣鸡。想起一句话「如果你不能简单地解释一样东西,说明你没真正理解它。」PHP 的源码里有很多细节和实现我都不算熟悉,这篇文章只是一个我的 PHP 底层学习的开篇,希望以后能够写出真正深入浅出的好文章。